Inferring object rankings based on noisy pairwise comparisons from multiple annotators

نویسندگان

  • Rahul Gupta
  • Shrikanth S. Narayanan
چکیده

Ranking a set of objects involves establishing an order allowing for comparisons between any pair of objects in the set. Oftentimes, due to the unavailability of a ground truth of ranked orders, researchers resort to obtaining judgments from multiple annotators followed by inferring the ground truth based on the collective knowledge of the crowd. However, the aggregation is often ad-hoc and involves imposing stringent assumptions in inferring the ground truth (e.g. majority vote). In this work, we propose Expectation-Maximization (EM) based algorithms that rely on the judgments from multiple annotators and the object attributes for inferring the latent ground truth. The algorithm learns the relation between the latent ground truth and object attributes as well as annotator specific “probabilities of flipping”, a metric to assess annotator quality. We further extend the EM algorithm to allow for a variable “probability of flipping” based on the pair of objects at hand. We test our algorithms on two data sets with synthetic annotations and investigate the impact of annotator quality and quantity on the inferred ground truth. We also obtain the results on two other data sets with annotations from machine/human annotators and interpret the output trends based on the data characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aesthetics based assessment and ranking of fashion images

We present an approach for ranking images by pooling from the knowledge and experience of crowdsourced annotators. Specifically, we address the highly subjective and complex problem of fashion interpretation and assessment of aesthetic qualities of images. To utilize the visual judgements, we introduce a novel dataset complete with labellings of various attributes of clothing and body shapes. L...

متن کامل

Worst-case vs Average-case Design for Estimation from Fixed Pairwise Comparisons

Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when...

متن کامل

Inferring ground truth from multi-annotator ordinal data: a probabilistic approach

A popular approach for large scale data annotation tasks is crowdsourcing, wherein each data point is labeled by multiple noisy annotators. We consider the problem of inferring ground truth from noisy ordinal labels obtained from multiple annotators of varying and unknown expertise levels. Annotation models for ordinal data have been proposed mostly as extensions of their binary/categorical cou...

متن کامل

Approximate Ranking from Pairwise Comparisons

A common problem in machine learning is to rank a set of n items based on pairwise comparisons. Here ranking refers to partitioning the items into sets of pre-specified sizes according to their scores, which includes identification of the top-k items as the most prominent special case. The score of a given item is defined as the probability that it beats a randomly chosen other item. Finding an...

متن کامل

Active Ranking using Pairwise Comparisons

This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of n objects can be identified by standard sorting methods using n log2 n pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. Specifically, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.04413  شماره 

صفحات  -

تاریخ انتشار 2016